
Calculation of the reflected wave 
from a pipe with a nozzle end by 
the Lax-Wendroff method 
M. D. War ren*  

The solution of gas flow problems in pipes with nozzle ends is discussed. The Lax- 
Wendroff method, with a hybrid boundary condition approximation, is used to 
compute the numerical solutions to some test problems, The accuracy of the 
solutions obtained by this method is assessed by a comparison with theoretical 
solutions. 
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Calculation of the reflected wave arising from a shock 
impinging on the closed, open or nozzle end of a pipe by 
graphical methods is well-established 1. Another 
possibility is to solve the problem on a computer using 
either a 'shock-tracking' or 'shock-capturing' approach. 

In a shock-tracking method, the relations across 
any discontinuity are solved exactly, and elsewhere the 
method of characteristics is used 2. However, shock- 
tracking requires special procedures to keep account of all 
the discontinuities that can arise and, as their number 
grows, the methods can become rather cumbersome a. 

In contrast, the shock-capturing methods, such as 
the Lax-Wendro~, require no special procedures since 
the relations across the discontinuities are automatically 
catered for by the methods themselves. Shock-capturing 
methods can thus provide reasonably accurate answers to 
flow problems with a minimum of programming effort. 

The Lax-Wendroff method, however, cannot be 
used on the boundary of a problem so another method is 
required to approximate the conditions there. Boundary 
condition approximations have been considered 5'6 for 
closed and open ends. A hybrid boundary condition 
approximation, for use with the Lax-Wendroff method, 
has also been developed which can be used under all types 
of flow conditions. The method has been tested against 
exact solutions and has given good accuracy for pipes 
with open ends. This paper completes this development 
by showing that the Lax-Wendroff method, in 
conjunction with this hybrid method of boundary 
approximation, may be used to calculate the reflected 
wave from a pipe with a nozzle end. The accuracy of the 
method is assessed from a comparison with solutions 
obtained by theoretical methods. 

Governing equations 
The equations of continuity, momentum and energy for 
the one-dimensional flow of an ideal gas, with heat 
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transfer and wall-friction, may be written in the form: 

~V OG(V) 
- - +  --B (1) 
c~t ~x 

with 

L (e +p)u l 

I°1 B= -p4~ 
L p q  a 

and the wall-friction term defined by: 

~ 4fu,, =B~IUl (2) 

The particle velocity, u, and the pressure, p, may be 
obtained from: 

u=m/p (3) 
and: 

p = (y - 1)(e - ½pu 2) (4) 

The governing equations may also be written in the 
quasilinear form: 

OW+AOW C 
~i ~ =  (5) 

with: 

A = u 1/p 
a2p u 
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The characteristics and characteristic relations can be 
obtained from this quasilinear form to give: 

7 - 1  a 
da -t- u = ~ d t  +-:-daa (6) 

2 a a 

with: 

ct =(y-I~-T-~b(1 ~ ( ~ , - 1 ~ )  

on the C tl~, C TM characteristics and: 

1 a a 
daa= ~ - ~ f l d t  (7) 

with: 

fl-- (y - 1)p(q 4- u~b) 

on the C characteristic 4. 

Ref lected w a v e s  f r o m  a nozzle end 

This section considers the theoretical solution to shock 
tube problems in which a shock travels down a tube, 
impinges upon a short nozzle at the end of the tube and 
undergoes reflection. So that a theoretical solution can be 
obtained it is assumed that the friction and heat transfer 
terms are zero in the governing equations. 

For  a shock wave moving down a tube with a 
nozzle end the reflected wave may be either a shock wave 
or a rarefaction wave. Woods I discusses graphical 
methods of solution for the various cases that can arise in 
pipes with open, closed or nozzle ends, Theoretical 
solutions are also available and in this paper we consider 
two of these cases; that of an incident shock producing a 
reflected rarefaction wave with subsonic flow at the nozzle 
exit, and that of an incident shock producing a reflected 
shock wave with sonic flow at the nozzle exit. 

Underlying all these solutions is what has been 
termed s the 'quasi-steady assumption'. It is therefore 
assumed that the length of the nozzle is so short that the 
flow conditions do not change significantly during the 
time required for a wave to pass through it. It is thus 
possible to use the steady state relations across the nozzle 
as the calculation proceeds. For  a converging nozzle these 
steady state relations choke the flow so that there is 
always subsonic flow at the nozzle entrance, and either 
subsonic or sonic flow at the nozzle exit. 

In the problems considered here it is assumed that 
all pipes are of unit length with a short nozzle at the pipe 
end, x = 1.0, of area-ratio ~k = AdA ,  where A and A= are the 
cross-sectional areas of the pipe and nozzle exit 
respectively. The value of this area-ratio was taken as 
~b = 0.5 in all the examples considered. 

A further assumption is that the initial values form 
a Riemann Initial Value Problem. Initial conditions of the 
following form are therefore considered: 

u =ul  P=Pl  P =Pl  (8a) 

for x < 0, and 

U=Uo P=Po P =P0 (8b) 

for x > 0. By choosing these initial conditions to satisfy the 
Rankine-Hugoniot  equations: 

U(p 1 - Po) = P lu 1 - poUo 

U(plul  - poUo) = Pl u2 + Pl - Po u 2 - p o  

U(el - eo) = U l (el + Pl ) -  Uo(eo + Po) (9) 

an exact solution is obtained, consisting of a shock 
moving with a shock velocity, U, with values ul, p~, p~ 
behind and values u0, P0, P0 in front of the shock. This 
shock may be reflected either as a shock or rarefaction 
wave, dependent upon the incident shock pressure ratio, z, 
where z = (Pl - Po)/Po. 

The shock path in (x,t) space can be conveniently 
represented in a position diagram. The path of a shock, 
impinging on and reflected from the nozzle as a shock, is 
shown in Fig 1 (a) illustrating the notation. Fig l(b) shows 
a shock impinging on a nozzle and reflected as a 
rarefaction wave. 

Reflected rarefact ion w a v e  

Assume that the incident shock pressure ratio, z, is small 
enough in magnitude to produce a reflected rarefaction 
wave, with subsonic flow at the nozzle exit, once the 
incident shock has impinged on the nozzle end. 

To obtain the solution to the problem, after the 
shock has impinged on the nozzle, it is necessary to 
postulate a reflected rarefaction wave behind which the 
flow has the unknown values: particle velocity, u, and 
wave velocity, a. The values ahead of the reflected 
rarefaction wave are u~ and al and across this wave the 
Riemann invariant equation: 

a + ~ - u = a l  + ~ - ~ u  1 (10) 

Nota t ion  
a 

au 

A,Ae 
D 
e 

f 
m 

P 
q 

Speed of sound 
Speed of sound after isentropic change of state to 
reference pressure Pra 
Cross-sectional area of pipe, nozzle exit 
Pipe diameter 
Total energy per unit volume 
Friction factor 
Momentum per unit volume 
Pressure 
Heat transfer rate per unit mass 

t Time 
u Particle velocity 
U Shock velocity 
x Distance 
z Incident shock pressure ratio 
y Ratio of specific heats (y = 1.4) 
p Density 
~b Ae/A 

Subscript~superscript 
V~j- r(jh,nk ) -  V(x,t) 
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Fig 1 Position diagram (a) reflected shock wave (b) 
reflected rarefaction wave 

Reflected wave from a pipe with a nozzle end 

method. This method was used to obtain the solution to 
the following example. 

Incident shock wave with reflected rarefaction wave 

The following initial values were assumed: 

u 1 = 0.2988 Pl = 1.5 Pl = 1.867 

for x < 0 ,  and: 

u o = 0.0 P0 -- 1.0 Po -- 1.4 

for x > 0 .  
With these initial values the problem has an exact 

solution: 

u = 0.2988 p = 1.5 p = 1.867 

for x/t< 1.195 and: 

u = 0.0 p = 1.0 p = 1.4 

for x/t> 1.195 and 0<t<0.8368.  
For  t > 0.8368 the solution consists of two constant 

state regions separated by a rarefaction fan. In this 
example the constant values are: 

u = 0.2988 p = 1.5 p = 1.867 

for 0~<x~< 1.0-0.7622t' ,  and: 

u =0.3135 p =  1.471 p = 1.841 

for 1 .0 -0 .7442t '~x~  1.0, where the time, f, is measured 
from the moment when the shock arrives at the nozzle 
end. The region 1.0-0.7622t' ~<x ~< 1.0-0.7442t' constitutes 
the rarefaction wave region. These solutions are 
illustrated in Fig 2 for various values of time. The constant 
values at the nozzle exit, not shown in the figure, are: 

u = 0.8263 p = 1.0 p = 1.397 

for t > 0.8368. 

must hold. The notation used here is illustrated in the 
position diagram shown in Fig l(b). 

For  subsonic flow at the nozzle exit, the steady- 
state continuity and energy equations, holding across the 
nozzle, take the form: 

puA = peueA~ (1 la) 

a2 d-~u2=ae2 q - ~ u  2 ( l lb)  

where the subscript 'e' indicates values at the nozzle exit. 
With the further assumption of isentropic flow through 
the nozzle, Eqs 11(a) and (b) lead to the relation: 

Lk ) @J (12) 

The value of the wave velocity at the nozzle exit, ae, in this 
equation is determined by the isentropic relation4: 

ae = (a,)e(p ff p=f) ~'-1)/~') (13) 

with the entropy measure variable obtained from 
(a,)e=(a,)l, and the exit pressure, Pc, assumed known. 
Using Eq (10) it is now possible to write Eq (12) in terms of 
the wave velocity, a, and so obtain a non-linear equation 
which can be solved numerically, eg by the bisection 

Reflected shock wave 

Assume that the incident shock pressure ratio, z, is large 
enough to produce a reflected shock, with sonic flow at the 
nozzle exit, once the incident shock has impinged on the 
nozzle end. J 

To obtain the solution to the problem afte~ 
reflection, it is necessary to postulate a reflected shocl~ 
wave behind which the flow has the unknown valuest 
pressure, p, density, p, and particle velocity, u. The values 
ahead of the reflected shock are PI, Pl, ul and across the 
reflected shock wave the Rankine-Hugoniot  equations: 

U(P-p1)=pu-plUl 
U(pu-plul)=P u2 +P-P1 u2-pl  (14) 

U(e-el)=u(e+p)-ux(el +Pl) 

must hold, with the shock speed, U, having a negative 
value, since the shock is now moving to the left against the 
positive direction of flow. The notation used here is 
illustrated in the position diagram shown in Fig l(a). 

Following Whitham 7 it is convenient to express 
these relations in terms of the shock ratio, z = ( p - p  t) /Pt.  
The relations across the shock now take the form: 

U - u 1 =  f l  ' ~+1 ~1/2 (15a) 
a--~l zV / 
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Exact solution 

(a) Shock wave, t=O.O and t=0.78 (b) reflected rarefaction wave, t=1.53 

U - - U  1 ~--. Z 

a 1 ( . y + l  ~ 1 / 2  (15b) 
7 1 + - ~ 7  z ) 

l + ~ + l z  

P ~ (15c) 

Pl 1 + ~ 7 1 z  

- =  I 

The problem can now be solved by the 
determination of the parameter, z, and this can be 
achieved by examining the flow conditions at the nozzle 
end. For sonic flow at the nozzle exit, ue=a~, the 
continuity and energy equations, holding across the 
nozzle, take the form: 

puA = peueAe (16a) 

~ - 1  2 7 +1 2 a 2 +--~---u = ~ - a e  (16b) 

With the further assumption of isentropic flow through 
the nozzle, valid once the shock wave has been reflected, 
Eqs (16a) and (16b) lead to the relation: 

a2 .T- -1  2 7+1 ( ~ )  ~r- w(~+') 
+-ff--u = T  (17) 

It is now possible, using Eqs 15(b) and (d), to write Eq (17) 
in terms of z and so obtain a non-linear equation which 
can be solved numerically. This method was used to 
obtain the solution to the following example. 

Incident shock with reflected shock wave 

The following initial values were assumed: 

ul =4.0 Pl =29.0 Pl =7.0 

2 0 8  V o l  6, N o  3, S e p t e m b e r  1 9 8 5  
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(a) Shock wave, t =0 and t =0.19 (b) reflected shock wave, t =0.9 

for x < 0 ,  and: 

Uo = 0.0 Po = 1.0 Po = 1.4 

for x > 0 .  
With these initial values the problem has an exact 

solution: 

u=4 .0  p=29.0  p=7 .0  

for x/t<5.0 and: 

u = 0.0 p = 1.0 p = 1.4 

for x/t>5.0, for all t satisfying 0 < t < 0 . 2 .  
For  t >  0.2 the solution consists of two constant 

state regions separated by a shock discontinuity. In this 
example the constant values are: 

u=4 .0  p=29.0  p = 7 . 0  

for 0 ~<x < 1.0 -0.8453t ' ,  and: 

u = 0.9598 p = 132.1 p = 18.79 

for 1.0-0.8453t'  < x  ~< 1.0, where the time, t', is measured 
from the moment when the shock is reflected from the 
nozzle end. These solutions are illustrated in Fig 3 for 
various values of time. The constant values at the nozzle 

exit, not shown in the figure, are: 

u=2.891 p=74.50 p=12.48 

for t > 0.2. 

N u m e r i c a l  s o l u t i o n  

T w o - s t e p  L a x - W e n d r o f f  m e t h o d  

For a pipe and short nozzle subdivided by the nodal 
points j = 0 ,  . . . .  J, as shown in Fig 4, the Lax-Wendroff 
approximation to Eq (1)gives: 

,j+'~"+'/2=~(U+,+U)-,/2 (o;+,-oT)+ ~+1+~) 

1 _  v"  &_~t ~.+1/2 n . + z / 2 ~ . ~ . + l / 2 . ~ . , + l / 2 ~  
U 4- - -  v j - -  A 1L%.Sj 4- J / 2  - -  ~ ' J j  - -  1 / 2  J T 2 ~,IL3j 4- 1//2 V u j  __ 1 / /2J 

(18) 
By applying this approximation to the grid it is possible to 
calculate U ÷  1, for j  = 1 . . . .  J -  2. The calculation of Wo + 1, 
Ws + ~and V~ + 1 requires the consideration of the boundary 
conditions. 
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Fig 4 (a) Shock tube with short nozzle (b ) computational 
grid for pipe of length x = ( J -  1)h 

Approximation at the outf low boundary 

Conditions at the outflow boundary are approximated by 
the hybrid method, already discussed 6. In the notation of 
Fig4, for the short nozzle considered here, the 
computation of the flow values at the J -  1 and J nodes at 
the time level t = (n + 1)k is required. In the hybrid method, 
the approximation relating the flow between the J -  2 and 
J - 1  nodes is dependent upon whether the flow is 
subsonic or supersonic at the J - 1  node. For the 
converging nozzle considered here, however, the 
computations showed that there was no possibility of 
sonic or supersonic flow at the J - 1  node. This is in 
agreement with the choking effect of the converging 
nozzle which limits the flow at the exit end, node J, to 
sonic, and the flow at node J - 1 to subsonic values. Since 
there can only be subsonic flow at node J - 1 ,  from a 
consideration of the hybrid method, it now follows that 
the flow between nodes J - 2 and J -  1 is governed solely 
by the characteristic equations. 

In the numerical approximation many of the 
equations already used still hold, thus, for brevity, the 
following redefinitions are introduced: 

a~ +1 = ae u7 +l = Ue (aa)7 +1 = (aa)e 
+ 1  U n + l  "a x n + l  5-1 =a,  J-i =/2 I J d - I  --aa 

ap = a  I up =u l  (aa)s =(aa)l 

using the notation of Fig 4. These redefinitions apply to 
Eqs (1 i)-(13), (16) and (17). At the nozzle exit the flow may 
be either subsonic or sonic and these cases are now 
considered separately. 

For subsonic flow at the nozzle exit it is once again 
possible to write Eq (12) as a non-linear equation in terms 
of the wave velocity, ,,.+1 • v- l ,  by using the numerical 
approximation to Eq (6), along the C (1) characteristic: 

7--1 7 - - 1  7 - - 1  a A - 
aR + ~- -uR = ap + ~ - - u  r + - ~ - ~ A  k + (a~l(a,)R - (a,)p] 

(19) 

to eliminate u~ +: (=  UR)- The value of the entropy measure 
variable, (a~)., may be obtained from the numerical 
approximation to Eq (7), along the C characteristic: 

, . 1 (a~)a _ . 
(a~)R = I, aJs + ~ A 2  PAt~ (20) 

Once the values at [(J - 1)h, (n + 1)k] have been obtained 
Eqs (1 la) and (11b) may be used to obtain values at the 
nozzle exit, [Jh, (n + 1)k]. 

For sonic flow at the nozzle exit, Eq (17) may be 
written as a non-linear equation in terms of the wave 

,+1 in a similar fashion. Once the values at velocity, a j_ ~, 
[ ( J -  l)h, (n + 1)k] have been obtained Eqs (16a) and (16b), 
along with the isentropic assumption, may be used to 
obtain the values at [Jh, in + l)k]. 

These subsonic and sonic approximations are used 
in the following manner. In the numerical solution it is 
assumed initially that the flow is subsonic at the nozzle 
exit and the subsonic approximations are used. If the 
computed flow at the nozzle exit gives a subsonic solution 
the calculation is terminated, but if supersonic flow values 
are obtained the solutions are recalculated using the sonic 
approximations. 

Computational notes 

Computations were performed to check the accuracy of 
the numerical method in comparison with that obtained 
from the theoretical solutions. Hence all the computations 
were performed with the assumption of zero friction, 
(q~ = 0), zero heat transfer (q = 0), and the nozzle was taken 
to have an area ratio, ~k --- 0.5. Solutions were obtained for 
various mesh-lengths, Ax, with the time increment, At, 
obtained from max(lul +a)At/Ax=0.9 in order to satisfy 
the Courant-Friedrichs-Lewy condition 4. The results of 
these computations are shown in Figs 2 and 3. 

As the illustrated solutions to these examples 
show, the Lax-Wendroff method with the hybrid 
boundary approximation can achieve a good 
representation of the theoretical solutions. The values at 
the nozzle exit are not shown in the figures. For the 
example with the rarefaction wave, the values obtained by 
the Lax-Wendroff method were: 

u = 0.8260 p = 1.0 p = 1.397 

for t>0.8368, showing agreement to three significant 
figures with the theoretical solution. For the example with 
the reflected shock wave, the values obtained were: 

u=2.887 p=74.18 p =  12.46 

for t > 0.2, showing agreement to two significant figures 
with the theoretical solution. 

C o n c l u s i o n  

This paper has been concerned with the computation of 
gas flow in pipes with a short nozzle end. The 
computation of solutions using a shock-capturing 
method, the Lax-Wendroff method with a hybrid method 
of approximation at the boundary, has been considered. 
The accuracy of this method has been assessed by 
comparison with theoretical solutions, involving both 
shock and rarefaction reflections, through a choice of 
suitable parameters. These theoretical solutions may be 
used as a benchmark for the comparison of numerical 
methods of solution. Solutions to the test problems using 
the Lax-Wendroff method with the hybrid boundary 
condition approximation have shown that good accuracy 
can be achieved. 
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Finally, the method developed here could be 
applied to autoclave systems under disc rupture, and it is 
intended to report on some theoretical/practical 
comparisons shortly. 

References 

1. Woods W. A. On the reflection of shock waves from deflector plates. 
Proc. I. Mech. E., 19654, 180, Part 3J, 245-259 

2. Woods W. A. and Owen D. Discharge from an autoclave system. Fifth 
Australasian Conference on Hydraulics and Fluid Mechanics, 1974, 
148-155 

Reflected wave from a pipe with a nozzle end 

3. Fox L. Numerical solution of ordinary and partial differential 
equations, Pergamon 1962 

4. Lax P. D. and WendroH B. Systems of conservation laws, Comm. 
Pure Appl. Math, 1960, 13, 217-237 

5. W~fen M. D. Appropriate boundary conditions for the solution of 
the equations of unsteady one-dimensional gas flow by the Lax- 
Wendroff method. Int. J. Heat and Fluid Flow, 1983, 4, 53-59 

6. Warren M. D. Open-end outflow boundary approximations for the 
solution of the equations of unsteady one-dimensional gas flow by 
the Lax-Wendroffmethod. Int. J. Heat and Fluid Flow, 1984, 5, 43-50 

7. Whitham G. B. Linear and non-linear waves. Wiley 1974 

8. Rudinger G. Non-steady duct flow. Dover 1969 

IBOOK RIEVIIE'W 
Review of Mass Flow 
Measurements - 1984 

Eds T. R. Hedrick and R. M. Reimer 

The papers compiled in this document reflect the wide 
range of concerns of flow meter manufacturers and users 
alike that increasingly prevail in many industrial sectors 
in 1985. The current scarcity of critical fluid resources and 
the rising prices of valuable fluid products are generating 
enhanced interest in improved fluid measurements. This is 
true not only for the accuracy requirements in custody 
transfer between buyer and seller of fluid but also in the 
precision levels now needed to satisfactorily monitor and 
control fluid flow for optimal productivity in the process 
industries, particularly the chemical and petrochemical 
industries. 

Mass flowrate is one of the fundamental physical 
variables in fluids engineering. Its measurement is an 
essential part of the development of many new process 
systems. The papers collected in this document represent 
a compilation of the flowmetering efforts underway today 
to improve fluid measurement. These papers describe: 

(1) new techniques or concepts in instrumentation; 
(2) experimental or test results to establish accuracy 

and/or precision of flow measurement techniques; 
(3) new methods or analytical models used to interpret 

instrument response characteristics. 

The papers are divided into four sections--two of these 
are devoted to differential pressure-type fluid metering 
topics, one to multiphase flow measurement, and one to 
electrical type fluid meters. 

Of the two differential pressure sections, one deals 
entirely with orifice meters and reflects the increased 
concerns prevailing today in the large-volume custody 
transfer of gas using these devices. The large calibration- 
testing programme underway both in the USA and in 

Europe to improve the fundamental data base for orifice 
meters indicate both the widespread concern and level of 
interests in improving matters. Corl"espondingly, a 
number of studies have been made to understand "salient 
features of orifice flow. Several of these involving 
geometrical or fluid dynamic effects are presented in the 
orifice metering section of this document. The remaining 
papers address alternative techniques such as vortex 
shedding, venturis, nozzles, etc. 

The multiphase flow measurement section 
contains a number of papers dealing with various aspects 
of the multitude of variables and conditions that are 
significant in this area of fluid (and solids) measurement. 
Paper topics range from the assessment of techniques 
determining the mass flowrate of gas-liquid mixtures 
through the analysis of capacitive techniques for void 
fraction to the presentation of test results for multi- 
component systems for measuring mass flowrate in 
transient two-phase flows. 

The electrical-type fluid metering section contains 
four papers which reflect efforts to establish new or 
improve existing measurements using electrical effects. 
The range of topical areas addressed includes droplet flux 
in mist flows, to thermal probe arrays for the duct flow of 
air, to velocity measurement via charging techniques in 
low conductivity fluids. 

In addition to concluding that this is a broad 
ranging and interesting compendium of fluid measure- 
ment results, the Coordinating Group on Fluid 
Measurements and Fluid Meters Committee, of the 
Fluids Engineering Division of ASME is to be 
commended for producing such a worthwhile document. 

G. E. Mattingly 
National Bureau of Standards 

Gaithersburg, MD, 
USA 
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